管娟

发布时间:2018-10-23  浏览次数:

职务职称:副教授,博士生导师

所在单位:高分子及复合材料系

联系电话:

电子邮箱:juan.guan@buaa.edu.cn

办公地点:学院路校区IRC大楼(第十馆)418

个人主页:

https://shi.buaa.edu.cn/guanjuan/zh_CN/index.htm



Ø 基本情况:

管娟,女,副教授,博士生导师,1984年生,2006年获得天津大学工学学士学位,2009年获得复旦大学高分子物理与化学理学硕士学位,2013年获得牛津大学动物学博士学位。讲授本科生专业核心课程《高分子物理》、研究生双语课程《生物大分子与材料》/<Biomacromolecules and Materials>,从事生物大分子材料设计及强韧化机理和医学应用研究,擅长高分子及复合材料的分子结构、粘弹性和复杂力学行为的表征,创新成果包括蜘蛛丝超收缩的分子机理、天然动物丝非晶结构的强韧化机制、天然蚕丝纤维复合材料的设计与强韧化机制、法向纤维增强仿生吸附材料的设计与机制。在《Nature Communications》、《Matter》、《ACS Applied Materials & Interface》等知名期刊发表论文40多篇,相关研究得到ScienceDailyACS PressBBC等国际知名科学媒体的报道。主持并完成1项国家自然科学基金青年科学基金、1项聚合物分子工程国家重点实验室开放课题,指导3项大学生创新创业课题(1项获评校级优秀“制备蚕丝和生物树脂复合材料及可降解植入物”、1项获评国家级重点支持领域项目“可吸收的天然蚕丝复合材料骨植入物”)。

每日科学蚕丝复合材料报道(原始报道为美国化学会专题报道)链接:

https://www.sciencedaily.com/releases/2020/08/200817104307.htm

每日科学法向纤维鮣鱼吸盘报道链接:

https://www.sciencedaily.com/releases/2020/02/200226131316.htm


Ø 主讲课程:

研究生课程:双语课程《生物大分子与材料》/<Biomacromolecules and Materials>

本科生课程:专业核心课《高分子物理》、全英文通识课《Structure, Property and Function of Biomacromolecules


Ø 研究方向:

1)生物大分子材料及其强韧化机制

2)天然丝纤维及其纤维增强复合材料

3)丝蛋白医用结构性材料


Ø 教学科研成果:

获奖情况:

12020年,北航校级一流课程教师(即将认证)

22018年,北航第六批青年拔尖人才

32014年,北航卓越百人计划


发明专利:

1)一种组织工程软骨支架的制备方法,管娟、吴素君、毛智南,专利号:ZL201911257846.2,授权日:2021322日。

2)一种可生物吸收的骨科植入材料及其制备方法,管娟、田文晗、刘玉增,专利号:ZL202111375191.6,授权日:2022921日。


代表性论文:

[1] 2022 Shi R.Y., Ye D.D., Ma K., Tian W.H., Zhao Y., Guo H.B., Shao Z.Z., Guan J.*, Ritchie R.O.* Understanding the Interfacial Adhesion between Natural Silk and Polycaprolactone for Fabrication of Continuous Silk Biocomposites. ACS Applied Materials & Interfaces, DOI: 10.1021/acsami.2c11045

[2] 2022 Yang K., Wu Z.H., Zhou C.G., Cai S.Y., Wu Z.T., Tian W.H., Wu S.J., Ritchie R.O.*, Guan J.* Comparison of epoxy resin matrices in natural silk-reinforced composites for rational design of tough composites. Composites Part A. 2022, 154, 106760.

[3] 2021 Tian W.H., Yang K., Wu S.J., Yang J.P., Luo H.Y., Guan J.*, Ritchie O.R.* Impact of hydration on the mechanical properties and damage mechanisms of natural silk fibre reinforced composites. Composites Part A. 2021, 147, 106458. DOI: 10.1016/j.compositesa.2021.106458

[4] 2021 Zhao Y., Zhu S.Z., Guan J.*, Wu S.J.* Processing, mechanical properties and bio-applications of silk fibroin-based high-strength hydrogels. Acta Biomaterialia. 2021, 125, 57-71. DOI: 10.1016/j.actbio.2021.02.018

[5] 2020 Mao Z.N., Bi X.W., Ye F., Shu X., Sun L., Guan J.*, Ritchie R.O., Wu S.J.* Controlled Cryogelation and Catalytic Cross-Linking Yields Highly Elastic and Robust Silk Fibroin Scaffolds. ACS Biomaterials Science and Engineering 2020, 6, 8, 4512-4522. DOI: 10.1021/acsbiomaterials.0c00752

[6] 2020 Su S.W., Wang S.Q., Li L., Xie Z.X, Hao F.C., Xu J.L., Wang S.K., Guan J.*, Wen L.* Vertical fibrous morphology and structure-function relationship in natural and biomimetic suction-based adhesion discs. Matter 2020, 2(5), 1207-1221. DOI: 10.1016/j.matt.2020.01.018

[7] 2019 Yang K., Guan J.*, Numata K., Wu S.J., Shao Z.Z., Ritchie R.O.* Integrating tough Antheraea pernyi silk and strong carbon fibers for impact-critical structural composites. Nature Communications 2019 (10), 3786. DOI: 10.1038/s41467-019-11520-2

[8] 2019 Yang K., Yazawa K., Tsuchiya K., Numata K.*, and Guan J.*. Molecular Interactions and Toughening Mechanisms in Silk Fibroin Epoxy Resin Blend Films. Biomacromolecules 2019, 20(6): 2295-2304. DOI: 10.1021/acs.biomac.9b00260

[9] 2019 Wu C.E., Yang K., Gu Y.Z., Xu J., Ritchie R.O.* and Guan J.* Mechanical properties and impact performance of silk-epoxy resin composites modulated by flax fibres. Composites Part A: Applied Science and Manufacturing 2019;117:357-68.DOI: 10.1016/j.compositesa.2018.12.003

[10] 2017 Guan, J.*; Zhu, W.; Liu, B.; Yang, K.; Vollrath, F.; Xu, J. Comparing the microstructure and mechanical properties of Bombyx mori and Antheraea pernyi cocoon composites. Acta Biomaterialia 2017, 47, 60-70. DOI:10.1016/j.actbio.2016.09.042

[11] 2016 Guan, J.*; Wang, Y.; Mortimer, B.; Holland, C.; Shao, Z.; Vollrath, F.* Glass transitions in native silk fibres studied by Dynamic Mechanical Thermal Analysis. Soft Matter 2016, 12, 5926-5936. DOI: 10.1039/C6SM00019C

[12] 2013 Guan J., Porter D., Vollrath F. Thermally induced changes in dynamic mechanical properties of native silks. Biomacromolecules 2013, 14(3), 930-937. DOI: 10.1021/bm400012k

[13] 2013 Porter D., Guan J., Vollrath F. Spider Silk: super material or thin fibre? Advanced materials 2013, 25(9), 1275-1279. DOI: 10.1002/adma.201204158

[14] 2012 Guan J., Porter D., Vollrath F. Silks cope with stress by tuning their mechanical properties under load. Polymer 53 (13), 2717–2726. DOI: 10.1016/j.polymer.2012.04.017

[15] 2011 Guan J., Vollrath F., Porter D. Two mechanisms for supercontraction in Nephila spider dragline silk. Biomacromolecules 12 (11), 4030–4035. DOI: 10.1021/bm201032v

[16] 2010 Guan J., Porter D., Tian K., Shao Z.Z., Chen X.* Morphology and mechanical properties of soy protein scaffolds made by directional freezing. Journal of Applied Polymer Science, 118 (3) 1658–1665. DOI: 10.1002/app.32579