邱春雷

发布时间:2018-11-07  浏览次数:

职务职称:教授,博士生导师

所在单位:材料加工工程与自动化系

联系电话:

电子邮箱:chunlei_qiu@buaa.edu.cn

办公地点:教学1号楼312

个人主页:

http://www.mse.buaa.edu.cn/info/1054/2560.htm



Ø 基本情况:

邱春雷,男,教授、博士生导师。于2010年获得英国伯明翰大学冶金与材料学院博士学位。20112016年在伯明翰大学从事研究员工作。20162017年任职于英国卡迪夫大学工程学院助理教授。过去十余年主要从事先进近净成形技术研究,包括激光增材制造及热等静压近净成形技术。在钛合金、高温合 金、铝合金、高熵合金、钛铝合金、Invar合金、不锈钢、难熔金属等的激光增材制造成形性、激光材料交互作用、凝固行为、缺陷形成机理、微观结构演变规律及力学行为等方面开展了大量研究工作突破了大型航空钛合金结构件 激光增材制造应力变形和缺陷控制,成功制备出多个大型航空部件和结构件, 突破多种难成形高性能铝合金和高熵合金的增材制造成形,开发出多种新型高强高塑钛合金、铝合金和高熵合金。曾作为项目负责人承担了国家重点研发计划项目等。在Acta Materialia, Additive Manufacturing等期刊上发表50多篇SCI论文,他引3500多次,H因子26,拥有美国发明专利1,英国发明专利1项,中国发明专利6项。


Ø 主讲课程:

本科生课程:《先进航空航天制造技术》、《课堂设计》


Ø 研究方向:

(1)金属激光增材制造及修复

(2)粉末热等静压近净成形

(3)高温合金、钛合金及铝合金

(4)新型高性能复杂合金的设计与开发


Ø 教学科研成果:

发明专利:

1)邱春雷,陈旭,孙鹏越,增材制造的具有超高屈服强度和高塑性的亚稳态β钛合金,中国发明专利,专利号:ZL202111127782.1,申请日期:2021.09.26,授权日期:2022.05.06

2)邱春雷,一种原位合成纳米氧化物颗粒弥散强化合金的方法, 中国发明专利,专利号:ZL201811243447.6,申请日期:2018.10.24,授权日期:2020.12.15

3)邱春雷,一种基于粉末再加工的热等静压近净成形方法,中国发明专利,专利号;ZL201810375751.X,申请日期:2018.04.25,授权日期:2020.06.05

4)邱春雷,刘彦君,许珑缤,具有完全等轴晶组织和超高屈服强度的钛合金,中国发明专利,申请号:202210493527.7,申请日期:2022.04.27

5)邱春雷,陈旭,刘彦君,一种用于增材制造的温度可控制样基台,中国发明专利,申请号:202210773610.X,申请日期:2022.07.01

6)邱春雷,王志超,许珑缤,一种抑制增材制造铝合金裂纹形成并促进晶粒细化的方法, 中国发明专利,申请号:202111567671.2,申请日期:2021.12.21

7Christopher Smith, Chunlei Qiu, Moataz M.M. Attallah, Stefan Simeonov Dimov, Method of Remanufacturing a Cylinder Head, JUSTIA patent(美国专利), publication number 20180178327, 2018.

8Christopher Smith, Chunlei Qiu, Moataz M.M. Attallah, Stefan Simeonov Dimov, Khamis Essa, Method of Remanufacturing a Cylinder Head, UK Patent (英国专利)publication number GB2558274, 2018.


代表性论文:

[1] Y.J. Liu, L.B. Xu, C.L. Qiu*. Development of an additively manufactured metastable beta titanium alloy with a fully equiaxed grain structure and ultrahigh yield strength. Additive Manufacturing, 60 (2022) 103208.

[2] Z.C. Wang, X.T. Wang, X. Chen, C.L. Qiu*. Complete columnar-to-equiaxed transition and significant grain refinement in an aluminium alloy by adding Nb particles through laser powder bed fusion. Additive Manufacturing 51 (2022) 102615.

[3] X. Chen, C.L. Qiu*. Development of a novel metastable beta titanium alloy with ultrahigh yield strength and good ductility based on laser power bed fusion. Additive Manufacturing 49 (2022) 102501.

[4] X.Y. Pan, C.L. Qiu*. Promoting columnar-to-equiaxed transition in AlCoCrFeNi high entropy alloy during selective laser melting by adding Cr3C2, Materials Research Letters 10 (2022) 788–796.

[5] X.Y. Pan, C.L. Jia, C.L. Qiu*. On the stress rupture behaviour and deformation mechanism of an advanced hot-extruded nickel-based superalloy. Journal of Alloys and Compounds 926 (2022) 166804.

[6] X.T. Wang, F.J. Qu, C.L. Qiu, On the Microstructural Evolution and Cracking Behavior of a Titanium Aluminide Alloy During Selective Laser Melting. 3D Printing and Additive Manufacturing 00 (2023) 00.

[7] X.Y. Pan, C.L. Jia, Z.Y. Ji, C.L. Qiu*. Microstructural evolution and dynamic recrystallization mechanism of a heavily-alloyed nickel-based superalloy during hot extrusion. Journal of Materials Research and Technology. 2023, in press.

[8] H.H. Liu, X.Y. Pan, P.Y. Sun, Y.J. Liu, C.L. Qiu*. Influence of Addition of Ti Particles and Processing Condition on Microstructure and Properties of Selectively Laser-Melted Invar 36 Alloy. 3D Printing and Additive Manufacturing00 (2022) 00.

[9] X.Y. Pan, C.L. Qiu*. Influence of quasi-crystal particles and processing condition on microstructure and tensile properties of a selective laser melted high entropy alloy. Vacuum 205 (2022) 111480.

[10] X.T. Wang, X.Y. Pan, P.Y. Sun, C.L. Qiu*. Significant enhancement in tensile strength and work hardening rate in CoCrFeMnNi by adding TiAl particles via selective laser melting. Materials Science & Engineering A 831 (2022) 142285.

[11] C.L. Qiu*, Y.J. Liu, H.H. Liu. Influence of addition of TiAl particles on microstructural and mechanical property development in Invar 36 processed by laser powder bed fusion. Additive Manufacturing 48 (2021) 102457.

[12] P.Y. Sun, C.L. Qiu*. Influence of addition of TiAl particles on microstructural and mechanical property development in a selectively laser melted stainless steel. Materials Science & Engineering A 826 (2021) 141925.

[13] C.L. Qiu*, Q. Liu, R.G. Ding. Significant enhancement in yield strength for a metastable beta titanium alloy by selective laser melting. Materials Science & Engineering A 816 (2021) 141291.

[14] Q. Liu, C.L. Qiu*. On the role of dynamic grain movement in deformation and mechanical anisotropy development in a selectively laser melted stainless steel. Additive Manufacturing 35 (2020) 101329.

[15] X. Chen, C.L. Qiu*. In-situ development of a sandwich microstructure with high strength and enhanced ductility by laser reheating of a laser melted titanium alloy. Scientific Reports 10 (2020) 15870.

[16] Q. Liu, C.L. Qiu*. Variant selection of a precipitation in a beta titanium alloy during selective laser melting and its influence on mechanical properties. Materials Science & Engineering A 784 (2020) 139336.

[17] G.Q. Wang, Q. Liu, H. Rao, H.C. Liu, C.L. Qiu*. Influence of porosity and microstructure on mechanical and corrosion properties of a selectively laser melted stainless steel. Journal of Alloys and Compounds 831 (2020) 154815.

[18] C.L. Qiu*. A new approach to synthesise high strength nano-oxide dispersion strengthened alloys. Journal of Alloys and Compounds 790 (2019) 1023-1033.

[19] C.L. Qiu*, H.X. Chen, Q. Liu, S. Yue, H.M. Wang. On the solidification behaviour and cracking origin of a nickel-based superalloy during selective laser melting. Materials Characterization 148 (2019) 330–344.

[20] C.L. Qiu*, Q. Liu. Multi-scale microstructural development and mechanical properties of a selectively laser melted beta titanium alloy. Additive Manufacturing 30 (2019) 100893.

[21] C.L. Qiu*, Z. Wang, A.S. Aladawi, M.A. Kindi, I.A. Hatimi, H. Chen, L. Chen. Influence of laser processing strategy and remelting on surface structure and porosity development during selective laser melting of a metallic material. Metallurgical and Materials Transactions A 50 (2019) 4423-4434.

[22] C.L. Qiu*, M.A. Kindi, A.S. Aladawi, I. A. Hatmi. A comprehensive study on microstructure and tensile behaviour of a selectively laser melted stainless steel. Scientific Reports 8 (2018) 7785.

[23] P.W. Liu, Y.Z. Ji, Z. Wang, C.L. Qiu, A.A. Antonysamy, L.Q. Chen, X.Y. Cui, L. Chen. Investigation on evolution mechanisms of site-specific grain structures during metal additive manufacturing. Journal of Materials Processing Technologies 257 (2018) 191-202.

[24] C.L. Qiu*, N.J.E. Adkins, M.M. Attallah. Selective Laser Melting of Invar 36: Microstructure and Properties. Acta Materialia 103 (2016) 382-395.

[25] N. D’Souza, J. Kelleher, C.L. Qiu, S.Y. Zhang, S. Gardner, R. E. Jones, D. Putman, C. Panwisawas. The Role of Stress Relaxation and Creep during High Temperature Deformation in Ni-base Single Crystal Superalloys - Implications to Strain build-up during Directional Solidification. Acta Materialia 106 (2016) 322-332.

[26] C.L. Qiu*, C. Panwisawas, M. Ward, H.C. Basoalto, J.W. Brooks, M.M. Attallah. On the role of melt flow into the surface structure and porosity development during selective laser melting. Acta Materialia 96 (2015) 72-79.

[27] M.M. Attallah, L.N. Carter, C.L. Qiu, N. Read, W. Wang. Microstructural and Mechanical Properties of Metal ALM. Book chapter in L. Bian, ‎N. Shamsaei, ‎J. Usher (editors): Laser-Based Additive Manufacturing of Metal Parts: Modeling, Optimizationand Control of Mechanical Properties, 2017, CRC Press.

[28] C. Cai, B. Song, C.L. Qiu*, L. Li, P. Xue, Q.S. Wei, J. Zhou, H. Nan, H. Chen, Y.S. Shi. Hot isostatic pressing of in-situ TiB/Ti-6Al-4V composites with novel reinforcement architecture, enhanced hardness and elevated tribological properties. Journal of Alloys and Compounds 710 (2017) 364-374.

[29] C.L. Qiu*, N. D’Souza, J. Kelleher, C. Panwisawas. An experimental investigation into the stress and strain development of a Ni-base single crystal superalloy during cooling from solidification. Materials and Design 114 (2017) 475-483.

[30] C. Panwisawas, C.L. Qiu, M. J. Anderson, Y. Sovani, R. P. Turner, M. M. Attallah, J. W. Brooks, H. C. Basoalto. Mesoscale modelling of selective laser melting: Thermal fluid dynamics and microstructural evolution. Computational Materials Science 126 (2017) 479-490.

[31] C.L. Qiu*, A. Fones, N.J.E. Adkins, H. Hamilton, M.M. Attallah. A new approach to develop Pd modified Ti-based alloys for biomedical application. Materials and Design 109C (2016) 98-111.

[32] G.A. Ravi, C.L. Qiu*, M.M. Attallah. Microstructural control in a Ti-based alloy by changing laser processing mode and power during direct laser deposition. Materials Letters 179 (2016) 104-108.

[33] H. Hassanin, K. Essa, C.L. Qiu, A.M. Abdelhafeez, N.J.E. Adkins, M.M. Attallah. Net-shape manufacturing using hybrid selective laser melting/hot isostatic pressing. Rapid Prototyping Journal 23 (2017) 720-726.

[34] C.L. Qiu*, N.J.E. Adkins, H. Hassanin, M.M. Attallah, K. Essa. In-situ shelling via selective laser melting: modelling and microstructural characterisation. Materials and Design 87 (2015) 845-853.

[35] C.L. Qiu*, G.A. Ravi, M.M. Attallah. Microstructural Control during Direct Laser Deposition of a b-Titanium Alloy (Ti5553). Materials and Design 81 (2015) 21-30.

[36] C. Panwisawas, C.L. Qiu, Y. Sovani, J.W. Brooks, M.M. Attallah, H.C. Basoalto. On the role of thermal fluid dynamics into the evolution of porosity during selective laser melting. Scripta Materialia 105 (2015) 14-17.

[37] C.L. Qiu*, Y. Sheng, N.J.E. Adkins, M. Ward, H. Hassanin, M.M. Attallah, P.D. Lee, P.J. Withers. Influence of processing conditions on strut structure and compressive property of cellular lattice structures fabricated by selective laser melting. Materials Science and Engineering A 628 (2015) 188-197.

[38] C.L. Qiu*, G.A. Ravi, C. Dance, A. Ranson, S. Dilworth, M.M. Attallah. Fabrication of large Ti-6Al-4V structures by direct laser deposition. Journal of Alloys and Compounds 629 (2015) 351-361.

[39] C.L. Qiu*, N.J.E. Adkins, M.M. Attallah. Microstructure and tensile properties of laser-melted and of HIPed laser-melted Ti-6Al-4V. Materials Science and Engineering A 578 (2013) 230-239.

[40] C.L. Qiu*, X.H. Wu. High cycle fatigue and fracture behaviour of a hot isostatically pressed nickel-based superalloy. Philosophical Magazine 94 (2013) 242-264.

[41] C.L. Qiu*, X.H. Wu, J.F. Mei, P. Andrews, W. Voice. Influence of heat treatment on microstructure and tensile properties of a hot isostatically pressed nickel-based superalloy. Journal of Alloys and Compounds 578 (2013) 454-464.

[42] Z.W. Wu, C.L. Qiu, V. Venkatesh, H. Fraser, R. Williams, G.B. Viswanathan, M. Thomas, S. Nag, R. Banerjee, M.H. Loretto. The Influence of Precipitation of Alpha2 on Properties and Microstructure in TIMETAL 6-4. Metallurgical and Materials Transactions A 44 (2013) 1706-1713.

[43] C.L. Qiu*, P. Andrews. On the formation of irregular-shaped gamma prime and serrated grain boundaries in a nickel-based superalloy during continuous cooling. Materials Characterization 76 (2013) 28-34.

[44] C.L. Qiu*, M.M. Attallah, X.H. Wu, P. Andrews. Influence of hot isostatic pressing temperature on microstructure and tensile properties of a nickel-based superalloy powder. Materials Science and Engineering A 564 (2013) 176-185.

[45] L. Liu, C.L. Qiu, C.Y. Huang, Y. Yu, H. Huang, S.M. Zhang. Biocompatibility of Ni-free Zr-based bulk metallic glasses. Intermetallics. 17 (2009) 235–240.

[46] L. Liu, C.L. Qiu*, Q. Chen, K.C. Chan, S.M. Zhang. Deformation behaviour, corrosion resistance, and cytotoxicity of Ni-free Zr-based bulk metallic glasses. Journal of Biomedical Materials Research - Part A. 86 (2008) 1160-1169.

[47] L. Liu, K.C. Chan, C.L. Qiu, Q. Chen. Formation and biocompatibility of Ni-Free Zr60Nb5Cu20Fe5Al10 bulk metallic glass. Materials Transactions. 48 (2007) 1879-1882.

[48] L. Liu, C.L. Qiu*, M. Sun, Q. Chen, K.C. Chan, G.K.H. Pang. Improvements in the plasticity and biocompatibility of Zr-Cu-Ni-Al bulk metallic glass by the micro-alloying of Nb. Materials Science and Engineering A. 448-451 (2007) 193-197.

[49] C.L. Qiu*, Q. Chen, L. Liu, K.C. Chan, J.X. Zhou, P.P. Chen, S.M. Zhang. A novel Ni-free Zr-based bulk metallic glass with enhanced plasticity and good biocompatibility. Scripta Materialia, 55 (2006) 605-608.

[50] L. Liu, C.L. Qiu*, Q. Chen, S.M. Zhang. Corrosion behaviour of Zr-based bulk metallic glasses in different artificial body fluids. Journal of Alloys and Compounds. 425 (2006) 268-73.

[51] L. Liu, M. Sun, Q. Chen, B. Liu, C.L. Qiu. Crystallization, mechanical and corrosion properties of Zr-Cu-Ni-Al-Nb bulk glassy alloys. Acta Physica Sinica. 55 (2006) 1930-1935.

[52] C.L. Qiu*, L. Liu, S. Min, S.M. Zhang. The effect of Nb addition on mechanical properties, corrosion behaviour, and metal-ion release of ZrAlCuNi bulk metallic glasses in artificial body fluid. Journal of Biomedical Materials Research - Part A. 75 (2005) 950-956.

[53] L. Liu, C.L. Qiu*, H. Zou. The effect of the micro-alloying of Hf on the corrosion behaviour of ZrCuNiAl bulk metallic glass. Journal of Alloys and Compounds. 399 (2005) 144-148.

[54] B. Liu, L. Liu, M. Sun, C.L. Qiu, Q. Chen. Influence of Cr micro-addition on the glass forming ability and corrosion resistance of Cu-based bulk metallic glasses. Acta Metallurgica Sinica. 41 (2005) 738-742.




更多新闻